The glowing, clumpy streams of material shown in these NASA/ESA Hubble Space Telescope images are the signposts of star birth.
Ejected episodically by young stars like cannon salvos, the blobby material zips along at more than 700 000 kilometres per hour. The speedy jets are confined to narrow beams by the powerful stellar magnetic field. Called Herbig-Haro or HH objects, these outflows have a bumpy ride through space.
When fast-moving blobs collide with slower-moving gas, bow shocks arise as the material heats up. Bow shocks are glowing waves of material similar to waves produced by the bow of a ship ploughing through water.
In HH 2, at lower right, several bow shocks can be seen where several fast-moving clumps have bunched up like cars in a traffic jam. In HH 34, at lower left, a grouping of merged bow shocks reveals regions that brighten and fade over time as the heated material cools where the shocks intersect.
In HH 47, at top, the blobs of material look like a string of cars on a crowded motorway, which ends in a chain-reaction accident. The smash up creates the bow shock, left.
These images are part of a series of time-lapse movies astronomers have made showing the outflows’ motion over time. The movies were stitched together from images taken over a 14-year period by Hubble’s Wide Field Planetary Camera 2. Hubble followed the jets over three epochs: HH 2 from 1994, 1997, and 2007; HH 34 from 1994, 1998, and 2007; and HH 47 from 1994, 1999, and 2008.
The outflows are roughly 1350 light-years from Earth. HH 34 and HH 2 reside near the Orion Nebula, in the northern sky. HH 47 is located in the southern constellation of Vela.
Ejected episodically by young stars like cannon salvos, the blobby material zips along at more than 700 000 kilometres per hour. The speedy jets are confined to narrow beams by the powerful stellar magnetic field. Called Herbig-Haro or HH objects, these outflows have a bumpy ride through space.
When fast-moving blobs collide with slower-moving gas, bow shocks arise as the material heats up. Bow shocks are glowing waves of material similar to waves produced by the bow of a ship ploughing through water.
In HH 2, at lower right, several bow shocks can be seen where several fast-moving clumps have bunched up like cars in a traffic jam. In HH 34, at lower left, a grouping of merged bow shocks reveals regions that brighten and fade over time as the heated material cools where the shocks intersect.
In HH 47, at top, the blobs of material look like a string of cars on a crowded motorway, which ends in a chain-reaction accident. The smash up creates the bow shock, left.
These images are part of a series of time-lapse movies astronomers have made showing the outflows’ motion over time. The movies were stitched together from images taken over a 14-year period by Hubble’s Wide Field Planetary Camera 2. Hubble followed the jets over three epochs: HH 2 from 1994, 1997, and 2007; HH 34 from 1994, 1998, and 2007; and HH 47 from 1994, 1999, and 2008.
The outflows are roughly 1350 light-years from Earth. HH 34 and HH 2 reside near the Orion Nebula, in the northern sky. HH 47 is located in the southern constellation of Vela.
Credit:
NASA, ESA, and P. Hartigan (Rice University)